Isotope: Transactional Isolation
for Block Storage

Ji-Yong Shin
Cornell University

In collaboration with
Mahesh Balakrishnan (Yale), Tudor Marian (Google), and
Hakim Weatherspoon (Cornell)

f‘%b’% Cornell University
'%(iéf?; Department of Computer Science FAST 2016

Multicore and Concurrency

* Concurrent access to storage is the norm

* For safe data access, concurrency control is a must

Cornell University

Sfi=ke)
%géf?y Department of Computer Science

Concurrency Control in Storage Stacks

* Most modern apps support | [J{NE———"

concurrency control :

cpe : [-
— App-specific implementation ! MEeREle S

— Typically, |0C|%: Filesystem / DB
Concgr.rency Con.t.rol I Block 1/0
(+ Atomicity/Durability) Is L~
Difﬁcu|t//é Device Driver
Transactional Block Store H/W Device
(Isolation + Atomicity +
Durability)

Cornell University

§1Ee]
%(iéf;)y Department of Computer Science

Why Transactional Block Store?

K3

e Simpler applications Applications

— One common implementation for

isolation (and atomicity/durability) LRGRELIERIGIE
T
Filesystem / DB f]

— TX APIs decouple policy/mechanism

Block 1/0

— TX over application-level constructs
(e.g. file, directories, key-value pairs) | Device Driver

H/W Device

— TX across different applications

(e.g. read from file and write to KV store)

End-To-End Argument?

Application specific functions
should be in end-hosts

Applications

— Transactional isolation is general RGRAELTE LIS
Pushed down function should not

incur unnecessary overheads

— Isolation can be implemented
efficiently

-

e.g. atomicity, block layer indirection,

Many block-level functions,

are already implemented

Filesystem / DB

Block 1/0

Device Drive

-

J\

TX using optimistic
concurrency control yields
low overhead

J

How do we design a transactional
block store?

|Isotope

Is a transactional block store useful?
1soBT, IsoHT, IsoFS, and ImgStore

Cornell University

(X
'%(Eéf?; Department of Computer Science

Rest of the Talk

* |sotope
—QOverview
—Design and APIs
— Applications

e Performance Evaluation

 Conclusion

Cornell University

(X
'%(Eéf?; Department of Computer Science

|Isotope

* The first block store to support TX isolation
— MARS and TxFlash only supported TX atomicity

e Multi-version optimistic concurrency control
— Keeps multiple versions of block data
— Speculatively executes TX until commit time

* One of two semantics supported
— Strict serializability
— Snapshot isolation

* Simple APIs
— BeginTX/EndTX/AbortTX and more

g;(ém;);% Cornell University

Department of Computer Science

BeginTX(); |sotope Design

foo=Read(0);
Write(1l,boo);
Write(3,baz);

EndTX () ; Application
() Virtual (Logical) 0 F 1 5 4 3 4 __p_ri ________
""""""" TTTTETTTTTTT Address Space 1 i Isotope
TX Contexts$ Temporary | vsa1 || vsss VS5:L5
Multi-version V54: 12 | vssi4 | Timestamp
i Index Counter: T55
Thread Id: 1| Version:Linear Addr
W BeginTime: [T53
e CESERES 0
Writel

Write 3 Physical data in a Log (linear address space)

\/

Write Buffer Tx Decision Engine

- . . o
o Thread Id: 0 Thread Id: 2

Thread Id: 1
Begin Time: T53 Begin Time: T50 BeginTime: T50
End Time: T54 End Time: T53 End Time: T52
Write O Write 1 Write O

/\/_

Queued context (sorted by end time) <€

& ﬁ"% Cornell University
%Lgi)g Department of Computer Science

Deciding Transactions

 Strict serializability based BeginTX(); // @ T53

3] . foo=Read(33);
Checks for read/write conflicts Write (25, bar);

Write(33, baz);
EndTX () ; // @ T55

End Time Conflict Window Begin Time

TX Decision Engine : (\ \ :
I O
T55 I T54 T53 T53 I T52
I I
R 33 Il W40 W 33 W 88 W 17
w25 | w22 | w33
W 33 I I
| v v x v
Commit v/ <
Abort x Conﬂict Queued contexts (sorted by end time)

®

N4

Isotope Challenges and Additional APIs

1. Application must be stateless (no caches)

— PleaseCache(): caches a data block in internal memory cache

2. Mismatching

data access granularity (application vs block)

— MarkAccessed(): indicates subblock level data access

False Conflict

XA

TXB

Write (0, foo); // modified 15t bit Write (0, bar); // modified last bit

g;(ém;);% Cornell University

EDC O

Filesystem
metadata block

Department of Computer Science

Implementation

* Built as device mapper in Linux kernel
— Logical block device similar to software RAID or LVM
— Can run on any block device (Disk, SSD, etc.)

* Log implemented based on Gecko

— Chain logging design
(Logs to multiple drives in round robin)

* APIs supported using IOCTL calls
— BeginTX/EndTX/AbortTX
— MarkAccessed/PleaseCache
— ReleaseTX/TakeoverTX

Cornell University

Department of Computer Science

Isotope Applications . sotope

* [soBT and IsoHT
— C++ library key-value stores
— Based on persistent B-tree and hashtable
— ACID Put, Get, Delete, etc.

* |sOFS

— FUSE based transactional filesystem

— Executes arbitrary filesystem ops (read, write,
rename, etc.) ACID’ly

— PleaseCache to handle metadata

gmsy Cornell University
'%(55-'5:25 Department of Computer Science

Ease of Programming

e Lines of code

Naive Lock-Based

Application

Example: Get()

Isolation
IsoHT 591
|IsoBT 1,229
IsoFS 997

Lock(); I ' :gBeginTX();
If('ReadMetadata(...)) { If('ReadMetadata(...)) {
Unlock(); | >AbortTX();
return failure; return failure;
} }
ReadData(...); ReadData(...);
Unlock(); | — 0 EndTX();
Isotope Isotope
TX APIs Optional APIs
(lines modified) (lines added)
1 1 1
591!(15)! 617i(26):
i i i
1,229i(12) i 1,246!(17) i
9971(19): 1,022}(25)1
A | ——

— Simple replacement of locks to BeginTX/EndTX/AbortTX
— Only few lines of code to add optimizations

Very easy to build transactional applications
using Isotope APIs

Cornell University
Department of Computer Science

& e
2\ &

Composing Applications |

Isotope

* ImgStore

— Transactional storage with two subsystems
— |soBT for metadata and IsoHT for images

1 process with threads

° Case ImgStore Library Model
. c c c ¢
1. Library BeEmTX BeEmTX BeEme e
End?X End!I'X End'.I'X End!I'X

Cornell University

§1Ee]
':géf:?y«? Department of Computer Science

Composing Applications

Isotope

* ImgStore
— Transactional storage with two subsystems

Continues on
a transaction

given the
handle

— |soBT for metadata and IsoHT for images

Returns a 2 processes with threads

transaction ImgStore Process Model

° Case handle

1. Library \ BegiSnTx BegiSnTx
2. Process g — EndTx

R 2 22 3

TX Handles through IPC

Composing Applications |

Isotope

* ImgStore

— Transactional storage with two subsystems
— |soBT for metadata and IsoHT for images

1 process with 2 different thread pools

ImgStore Thread Pool Model
e Case &

S S

1 . Li b ra ry BeginTX BeginTX

2. Process $ * EndTX EndTX
3. Thread pools -5 S

1. ImgStore was only 150 LoC
2. Easy to build large apps whose TX cross boundaries

Cornell University

§1Ee]
':géf:?y«? Department of Computer Science

Performance Evaluation

1. Micro benchmark
— Base performance of Isotope?

2. Key-value stores
— Performance of applications built over Isotope?

3. Filesystems
— Performance of new and existing filesystems?

4. ImgStore Composition
— Performance under different composition?

g;(ém;);% Cornell University

Department of Computer Science

Micro Benchmark
(Base Performance of Isotope)

« Random 3-4KB-reads-3-4KB-writes TX'es from 64 threads
* Increasing address space (decreasing Tx conflicts)

* Ran on 3-SSD chain
Block (4KB) TX Throughput

B Throughtput

i
I
: ¥ Goodput
i

Throughput (MB/s)
= N w D Ul

Address Space

1. Aborts are cheap

Subblock (16B) TX Throughput

: B Throughput
: ¥ Goodput
I

RPN EEESL L L

Address Space

2. Subblock TX mechanism has negligible overhead

48y Cornell University
%Lg;ﬁ)} Department of Computer Science

Key-Value Stores

* LevelDB: on RAIDO volume, Sync/Async mode
* Increasing number of threads on 2 SSDs

 8KB data using YCSB workload-a

30

=t=vIDB-s “*&LvIDB “#~|soHT =#=|soBT

N
(S}

N
o

Goodput (K Ops/Sec)
= =
o (6]
b

o (6,]
]

4 8 16 32 64 128
of Threads

Isotope-based applications perform comparable to
existing applications and guarantee strong semantics

Filesystems

e Ext2 and Ext3 on top of Isotope on SSDs
— Logging benefit
— All'l/Os as singleton transactions

* |0Zone benchmark write/rewrite phase with 8 threads

500

ekl) ALl L1)

M ext2 :
— 400 Tmext3 ;
= . I
s W IsoFS-lib 1
= 300 1
£ i
o I
£ [
W 700 I
) i
< I
= i

100
O -

seq-write seq-rewrite rand-rewrite

1. IsoFS performs comparable to ext2/3
2. ext2/3 saturates SSD with no slowdown

deei®) Cornell University

& Department of Computer Science

ImgStore Compositions

* Different compositions of ImgStore

* YCSB Workload-a
— 16KB image to/from IsoHT and metadata to/from IsoBT in a TX

16
__ 14
(8]
312
S~
o & A %
X 8
£ - “»&Cross-library A
8 4 =+=Cross-thread
© 5 “=Cross-process
0

4 8 16 32 64 128
of Threads

1. Small ReleaseTX/TakeoverTX overhead (lib vs thread)
2. Cross process overhead comes from |IPC

Conclusion

* First block storage with TX isolation
— Simple API: BeginTX, EndTX, AbortTX

— Low overhead design
(nearly free abort and MVCC)

— Optimizations for fine grained TX and caching

* Facilitates TX application design
— 1K LoC transactional KV-stores and filesystem
— Easy support for composition of TX applications

e Right time to consider pushing Isolation down the I/O stack

i@m%}% Cornell University

Department of Computer Science

Thank you
Questions?

Cornell University

§1Ee]
%(iéf;)y Department of Computer Science

