Towards Weakly Consistent Local Storage Systems

Ji-Yong Shin'?, Mahesh Balakrishnan?, Tudor Marian?, Jakub Szefer? and Hakim Weatherspoon*
1Cornell University , 2Yale University, 3Google

Server Trends

~

-

Distributed vs Modern Server

Year 2006 2016 Comparisons Distributed Systems Modern Servers
Model (4U) | Dell PowerEdge 6850 Dell PowerEdge R930 Different versions of data exist in |Different versions of data exist in
CPU 4 x 2 core Xeon |4 x 24 core Xeon 17X different servers due to network |different storage media due to
[# of cores] |[8] [96] delays during replication logging, caching, copy-on-write,
Memory |64GB 6TB 96X deduplication, etc.
Network - 2 x 1GIgk Older versions are faster to Older versions are faster to
12 x 1GigE . 11X
bandwidth 2 x 10GigkE access when the network access when they are on faster
Storage 8 x SCSI/SAS HDD 24 SAS HDD/SSD igf:ceil’lfels;:-:))((overheacis ow SLorage mecle %
& 10 x PCle SSD pacity: = 7>- / /
Use of SSDs / \

Reasons for different access speeds

v'RAM, SSD, HDD, hybrid-drives, etc.

v’ Disk with arm contention or SSD under garbage collection
v'RAID under degraded mode

* Modern servers are as powerful as distributed systems in the past
v' CPU and storage devices are parallel, similar to distributed nodes
* Goal is to trade-off consistency and performance in a local store

v’ Use of stale data in different storage devices for better performance

_ /

N NS /
4 N N
StaleStore Yogurt: A Block Level StaleStore
e Local storage systems in any form that can trade-off /O Write(blk, data, ver), Versioned writes to snapshots
. Read(blk, ver) Versioned reads from snapshots
consistency ana performance Cost GetCost(blk, ver) cache << disk,
(e.g. KV-store, filesystem, block store, DB, etc.) # of queued I/O (read << write)
Multi-block | GetVersonRange(blk, ver) |Returns a version range
Requirements: object access which a block is valid
1. Maintain multiple versions of data Reading block 1 (monotonic-reads) |
. . 1. Issue GetCost() for block 1 between versions 3 and 6
- Should have mt.erface to access F)Ider versions (N queries with uniform distance) Cache
2. Aware of consistency semantics 2. Read the cheapest: e.g. 1(5): Read(1,5) ===
- Bounded Staleness, monotonic-reads, read-my-writes, etc. 3. Record the selected version for block 1 i L——1—
3. Can give cost estimates for accessing each version — = - > —
- Considerations for data locations and storage conditions > 24 10) >
S~——_ " - S~—_ " - S~ " i~
. O\ t | Y
4 N N
Multi-Block Object Access in Yogurt Performance: Accessing Blocks and K-V Pairs
* Key-value stores, filesystems can store an object over multiple blocks > 200000 200000
c D .
* Read should be served from a persistent snapshot: GetVersionRange() £ 150000 d}fggfgtest 150000 "
i & 7100000 Yogurt MR 100000
3 o — “Yogurt RMW
= % 50000 _X_/\ 50000
£E5 2 o
g5 = 0 0
£ 1 1 23456 7 8 4KB 8KB 12KB 16KB 20KB
== # of Stale Versions @ start time Key-Value Pair Size
) * Primary/Backup setting
R * Primary performs the worst due to network delays (100ms)
: 0 ! 2 Block Addr JLe Yogurt performs better than local latest by using the trade-off)
4 N . N N
GetCost Overhead Other Possible StaleStores Summary
=/ * Single disk log-structured store . L
EX: * Modern servers are similar to distributed systems
>5 e SSD flash translation layers
c
%g * Log-structured arrays * Local storage systems can adopt weak consistency
@2 —— — o Il N B * Durable write caches that are fast for v We define them as StaleStores
§$ B B B B B . writes but slow for reads
< 32B 64B 128B 256B 512B 1024B * Deduplicated systems with read caches < Yogurt, a block level StaleStore
B 7 {15 , 31) (63), (127) * Fine-grained logging over a block-grained v Efectively trades-off consistency and performance
GetCost Query Size (# of queries) cache
| | v’ Supports high level multi-block data constructs
* Cost querying overhead is negligible * Systems storing differences from
compared to disk and SSD access latencies previous versions

_ YN AN /

