
Towards	Weakly	Consistent	Local	Storage	Systems	
Ji-Yong	Shin1,2,	Mahesh	Balakrishnan2,	Tudor	Marian3,	Jakub	Szefer2	and	Hakim	Weatherspoon1	

1Cornell	University	,	2Yale	University,	3Google	

StaleStore	

•  Primary/Backup	seLng	
•  Primary	performs	the	worst	due	to	network	delays	(100ms)	
•  Yogurt	performs	bePer	than	local	latest	by	using	the	trade-off	

Performance:	Accessing	Blocks	and	K-V	Pairs	

• Modern	servers	are	as	powerful	as	distributed	systems	in	the	past	
ü  CPU	and	storage	devices	are	parallel,	similar	to	distributed	nodes	
• Goal	is	to	trade-off	consistency	and	performance	in	a	local	store	
ü  Use	of	stale	data	in	different	storage	devices	for	bePer	performance	

Server	Trends	

GetCost	Overhead	

Yogurt:	A	Block	Level	StaleStore	

Summary	

• Modern	servers	are	similar	to	distributed	systems	

•  Local	storage	systems	can	adopt	weak	consistency	
ü We	define	them	as	StaleStores	

•  Yogurt,	a	block	level	StaleStore	
ü  EffecYvely	trades-off	consistency	and	performance	
ü  Supports	high	level	mulY-block	data	constructs	

Year		 2006		 2016		 Comparisons	
Model	(4U)	 Dell	PowerEdge	6850		 Dell	PowerEdge	R930		

CPU	
[#	of	cores]		

4	×	2	core	Xeon		
[8]	

4	×	24	core	Xeon		
[96]	 12X	

Memory		 64GB		 6TB		 96X	
Network	
bandwidth	 2	×	1GigE	

2	×	1GigE	
2	×	10GigE	 11X	

Storage		 8	×	SCSI/SAS	HDD		 24	×	SAS	HDD/SSD		10	x	PCIe	SSD	

#	of	devices:	4.2X	
Capacity:	175.3X	

Use	of	SSDs	

Distributed	vs	Modern	Server	
Distributed	Systems	 Modern	Servers	
Different	versions	of	data	exist	in	
different	servers	due	to	network	
delays	during	replicaYon	

Different	versions	of	data	exist	in	
different	storage	media	due	to	
logging,	caching,	copy-on-write,	
deduplicaYon,	etc.	

Older	versions	are	faster	to	
access	when	the	network	
overhead	is	low	

Older	versions	are	faster	to	
access	when	they	are	on	faster	
storage	media	

Reasons	for	different	access	speeds	
ü RAM,	SSD,	HDD,	hybrid-drives,	etc.	
ü Disk	with	arm	contenYon	or	SSD	under	garbage	collecYon	
ü RAID	under	degraded	mode	

•  Local	storage	systems	in	any	form	that	can	trade-off	
consistency	and	performance	
(e.g.	KV-store,	filesystem,	block	store,	DB,	etc.)	

	
	

Requirements:	
1.  Maintain	mulYple	versions	of	data	
			-	Should	have	interface	to	access	older	versions	
2.  Aware	of	consistency	semanYcs	
			-	Bounded	Staleness,	monotonic-reads,	read-my-writes,	etc.	
3.  Can	give	cost	esYmates	for	accessing	each	version	
			-	ConsideraYons	for	data	locaYons	and	storage	condiYons	

1.  Issue	GetCost()	for	block	1	between	versions	3	and	6		
(N	queries	with	uniform	distance)	

2.  Read	the	cheapest:	e.g.	1	(5):	Read(1,	5)	
3.  Record	the	selected	version	for	block	1	

3	(3)	 1	(4)	 2	(4)	 1	(5)	 3	(5)	 1	(6)	

Cache	
…	 …	 Lo

g	

I/O	
	

Write(blk,	data,	ver),	
Read(blk,	ver)	

Versioned	writes	to	snapshots	
Versioned	reads	from	snapshots	

Cost	 GetCost(blk,	ver)		 cache	<<	disk,		
#	of	queued	I/O	(read	<<	write)	

MulY-block	
object	access		

GetVersonRange(blk,	ver)	 Returns	a	version	range		
which	a	block	is	valid	

Reading	block	1	(monotonic-reads)	

•  Key-value	stores,	filesystems	can	store	an	object	over	mulYple	blocks	
•  Read	should	be	served	from	a	persistent	snapshot:	GetVersionRange()	

MulY-Block	Object	Access	in	Yogurt	

Hard	 Drive	Disk	

Solid	 State	

Disk	

0	

1	

2	

3	

Drive	

Solid	 State	

Solid	 State	 Disk	3	
	
	
	
	
	
1	

1	
1	

3	
	
	
2	

0	
0	

0	 1	 2	 Block	Addr	

Ti
m
es
ta
m
p	

(S
na
ps
ho

t	#
)	

0	

50000	

100000	

150000	

200000	

1	 2	 3	 4	 5	 6	 7	 8	

Av
er
ag
e	
Re

ad
	L
at
en

cy
	

(u
s)
	

#	of	Stale	Versions	@	start	Ome	

Primary	
Local	latest	
Yogurt	MR	
Yogurt	RMW	

0	

50000	

100000	

150000	

200000	

4KB	 8KB	 12KB	 16KB	 20KB	
Key-Value	Pair	Size	

0	
1	
2	
3	
4	
5	
6	
7	

32B	
(3)	

64B	
(7)	

128B	
(15)	

256B	
(31)	

512B	
(63)	

1024B	
(127)	

Av
er
ag
e	
La
te
nc
y	
(u
s)
	

GetCost	Query	Size	(#	of	queries)	

•  Cost	querying	overhead	is	negligible	
compared	to	disk	and	SSD	access	latencies	

Other	Possible	StaleStores	
•  Single	disk	log-structured	store	
•  SSD	flash	translaYon	layers	
•  Log-structured	arrays	
•  Durable	write	caches	that	are	fast	for	
writes	but	slow	for	reads	

•  Deduplicated	systems	with	read	caches	
•  Fine-grained	logging	over	a	block-grained	
cache	

•  Systems	storing	differences	from	
previous	versions	

